

Modelling approaches in dose finding clinical trials: Simulation-based study comparing predictive performances of model averaging and model selection S.Buatois^{1,2}, S.Ueckert³, N.Frey¹, S.Retout¹, F.Mentré²

PAGE meeting, June 7 2017

1. Roche Pharma Research & Early Development, Clinical Pharmacology, Roche Innovation Center Basel

- 2. IAME, INSERM UMR 1137, University Paris Diderot, F-75018 Paris, France
- 3. Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden

Background

- Finding the right dose is a critical step in clinical drug development^[1,2]
- Between 2000 and 2012, one of the highest causes of phase 3 submission failure was due to uncertainties related to dose selection^[3]
- Increased interest in model based approaches to characterize the dose response relationship^[4,5]

[1] Cross J. et al, Pharmacoepidemiol Drug Saf, 2002
 [2] Heerdink E.R. et al, Pharmacoepidemiol Drug Saf, 2002
 [3] Sacks L.V. et al, JAMA, 2014
 [4] Bornkamp B. et al, J Biopharm Stat, 2007
 [5] Pinheiro J. et al, Stat Med, 2014

Model based approaches

Model selection (MS):

Introductio

- Most commonly used approach
- Relies on selection of the model that best describes the data according to an information criterion (e.g. AIC)
- Making inferences on the basis of the selected model ignores model uncertainty which could impair predictive performance^[6,7]

[6] Buckland S.T. et al, Biometrics, 1997
[7] Mould D.R. et al , CPT Pharmacometrics Syst Pharmacol, 2012
[8] Aoki Y. et al, PAGE 23, 2014
[9] Schorning K. et al, Stat Med, 2016

Model based approaches

- Model selection (MS):
 - Most commonly used approach
 - Relies on selection of the model that best describes the data according to an information criterion (e.g. AIC)
 - Making inferences on the basis of the selected model ignores model uncertainty which could impair predictive performance^[6,7]
- Model averaging (MA):
 - Allows measuring the uncertainty across a set of candidate models l = 1, ..., L by weighting them in function of an IC^[8,9] (e.g. AIC) $e^{\frac{-AIC_l}{2}}$

$$w_l = \frac{e^{-2}}{\sum_{i=1}^{L} e^{\frac{-AICi}{2}}}$$

[6] Buckland S.T. et al, Biometrics, 1997

- [7] Mould D.R. et al , CPT Pharmacometrics Syst Pharmacol, 2012
- [8] Aoki Y. et al, PAGE 23, 2014
- [9] Schorning K. et al, Stat Med, 2016

Model Averaging

- Main applications in dose finding studies:
 - Aoki Y. et al, "Incorporate both the model parameter estimation uncertainty and the model structure uncertainty in dose selection"^[8]
 - Schorning K. et al, "Model selection versus model averaging in dose finding studies"^[9]

Objective:

To compare predictive performances of model averaging (MA) and model selection (MS) based on a predefined set of NLMEMs with similar disease progression model and different dose-effect relationships

Workflow:

Case Study:

- Neovascular age-related macular degeneration (wet AMD)
- Biomarker: Visual Acuity (VA)
- True Model:

$$f(d_i, t_j, \Phi_i) = VA_{0,i} + \left(1 - e^{-k_{pr,i} \cdot t_j}\right) \cdot \left(\begin{array}{c} \frac{Emax_i \cdot d}{ED_{50} + d} \\ -\beta_i \cdot VA_{0,i} \end{array}\right)$$

Log-normal distribution: VA_0, k_{pr}, β

Normal distribution: Emax

Parameter	μ	ω							-
VA_0 (letter)	55	0.26	ette						
$k_{pr} (Day^{-1})$	0.005	0.70	A (L						
β	0.2	1.0		\mathbf{N}					
Emax (letter)	30	12.2	ediar						
$ED_{_{50}}(\mu g)$	150	-	Me						
			-10-		-	- 10			
				0	5	10 Time (N	15 (Ionth)	20	25

- 300 patients equally distributed across the different dose levels
- 4 arms
- 26 observations per patient: baseline, day 7 & every month during 24 months
- End of trial (EOT): 24 months

- 300 patients equally distributed across the different dose levels
- 4 arms
- 26 observations per patient: baseline, day 7 & every month during 24 months
- End of trial (EOT): 24 months

Scenario	Doses	Model
Ι	0, 150, 300, 500 μ <i>g</i>	Emax

- 300 patients equally distributed across the different dose levels
- 4 arms
- 26 observations per patient: baseline, day 7 & every month during 24 months
- End of trial (EOT): 24 months

Scenario	Doses	Model
Ι	0, 150, 300, 500 μ <i>g</i>	Emax
II	0, 25, 50, 100 μ <i>g</i>	Emax

- 300 patients equally distributed across the different dose levels
- 4 arms
- 26 observations per patient: baseline, day 7 & every month during 24 months
- End of trial (EOT): 24 months

Scenario	Doses	Model
Ι	0, 150, 300, 500 μ <i>g</i>	Emax
II	0, 25, 50, 100 μ <i>g</i>	Emax
III	0, 25, 50, 100 μg	No drug effect

Simulations & Estimations:

<u>Simulations:</u>

For a given simulation scenario, s = 1, ..., 500 datasets were simulated and re-estimated using the l = 1, ..., 4 candidate models

Estimations:

- Estimation of $\widehat{\Psi}_{s,l}$ by maximizing the likelihood function
 - Expectation maximization method using importance sampling
- Software NONMEM 7.3

- Model predictions were used to compute the true and estimated probability distribution of the VA change from baseline (ΔVA) at end of trial (t_{EOT})
- Predictions were computed for each dose $d^k = \{0, 150, 300, 500\}$
- Modelling approaches: MS

<u>True probability</u> <u>distribution:</u>

- Model predictions were used to compute the true and estimated probability distribution of the VA change from baseline (ΔVA) at end of trial (t_{EOT})
- Predictions were computed for each dose $d^k = \{0, 150, 300, 500\}$
- Modelling approaches: MS

<u>True probability</u> <u>distribution:</u>

- Model predictions were used to compute the true and estimated probability distribution of the VA change from baseline (ΔVA) at end of trial (t_{EOT})
- Predictions were computed for each dose $d^k = \{0, 150, 300, 500\}$
- Modelling approaches: MS

<u>True probability</u> <u>distribution:</u>

- Model predictions were used to compute the true and estimated probability distribution of the VA change from baseline (ΔVA) at end of trial (t_{EOT})
- Predictions were computed for each dose $d^k = \{0, 150, 300, 500\}$
- Modelling approaches: MS

<u>True probability</u> <u>distribution:</u>

- Model predictions were used to compute the true and estimated probability distribution of the VA change from baseline (ΔVA) at end of trial (t_{EOT})
- Predictions were computed for each dose $d^k = \{0, 150, 300, 500\}$
- Modelling approaches: MS, MA

<u>True probability</u> <u>distribution:</u>

<u>Model averaging</u>

- Model predictions were used to compute the true and estimated probability distribution of the VA change from baseline (ΔVA) at end of trial (t_{EOT})
- Predictions were computed for each dose $d^k = \{0, 150, 300, 500\}$
- Modelling approaches: MS, MA, Candidate models

<u>True probability</u> <u>distribution:</u>

Candidate models

Model selection & Model averaging:

Primary end point: median Δ_{VA} at t_{EOT} <u>Clinically relevant effect:</u> increase of the median Δ_{VA} at t_{EOT} of at least 15 points compared to placebo patients

– – True
Predicted

Methods

1) Percentage of trials concluding to a clinically relevant effect at the highest simulated dose d^k

CRE%

Primary end point: median Δ_{VA} at t_{EOT} <u>Clinically relevant effect:</u> increase of the median Δ_{VA} at t_{EOT} of at least 15 points compared to placebo patients

– True
 Predicted

Methods

- 1) Percentage of trials concluding to a clinically relevant effect at the highest simulated dose d^k
- 2) Minimum dose at which a clinically relevant effect is achieved

Primary end point: median Δ_{VA} at t_{EOT} <u>Clinically relevant effect:</u> increase of the median Δ_{VA} at t_{EOT} of at least 15 points compared to placebo patients

- 1) Percentage of trials concluding to a clinically relevant effect at the highest simulated dose d^k
- 2) Minimum dose at which a clinically relevant effect is achieved
- 3) Kullback–Leibler divergence $(D_{KL})^{[10]}$: for a given dose

Methods

Performance criteria

- 1) Percentage of trials concluding to a clinically relevant effect at the highest simulated dose d^k
- 2) Minimum dose at which a clinically relevant effect is achieved
- 3) Kullback–Leibler divergence $(D_{KL})^{[10]}$: for a given dose
 - Total D_{KL} : over the set of doses d^k at t_{EOT}

Total
$$D_{KL}(p^*|p) = \sum_{k=1}^{K} D_{KL_k}(p^*|p)$$

1

1)

1)

Clinically relevant effect: (CRE)

2) Target dose d: Minimum effective dose (MED)

Results

2) Target dose d: Minimum effective dose (MED)

3) <u>Kullback–Leibler divergence</u>

3) <u>Kullback–Leibler divergence</u>

Conclusions:

- Under an informative design, MA & MS provided similar predictive performances and led to an accurate prediction of the target dose
- Under less informative designs, by estimating weights on a predefine set of NLMEMs, MA showed relatively better predictive performance than MS increasing the likelihood to accurately characterize the dose response relationship

Perspectives:

- Include parameter uncertainties in the predictions
 - Compare coverage performances of MS and MA
- Explore the case where the true model is not in the set of candidate models
- Include different disease progression models in the set of candidate models

Thanks to:

Inserm Colleagues:

Roche Colleagues:

Backup

5) Model selection & Model averaging:

- Both approaches rely on an information criterion I^[8]
- The value I_l was calculated under each candidate model $I = -2LL(y, \Psi) + 2pen$

Ι	Penalty (pen) term for model l
AIC	p
BIC _N	$0.5 \times p \times \log(N)$
BIC _{nt}	$0.5 \times p \times \log(n_{tot})$
CAIC _N	$0.5 \times p \times (\log(N) + 1)$
CAIC _{nt}	$0.5 \times p \times (\log(n_{tot}) + 1)$

Model selection:

Predictions are obtain using the model with the lowest I₁ value among the L candidate models

[8] Bertrand J. et al, J Biopharm Stat. 2008[9] Claeskens G . et al, New York: Cambridge University Press, 2008

<u>Model averaging: [9]</u> Weights are associated with each of the candidate models w_l

$$w_{l} = \frac{e^{\frac{-I_{l}}{2}}}{\sum_{i=1}^{L} e^{\frac{-I_{i}}{2}}}$$

Information criteria:

Scenario: Emax, doses around ED50

Scenario	Doses	Model
1	0,150,300,500 µg	Emax

Model selection:

Model averaging:

Ι	Emax	Linear	Log-Linear	Sigmoid Emax	Ι	Emax	Linear	Log-Linear	Sigmoid Emax
AIC	57%	0%	21%	22%	AIC	0,50	0,00	0,13	0,22
BIC _N	41%	0%	56%	3%	BIC _N	0,37	0,00	0,57	0,02
BIC _{nt}	22%	0%	77%	1%	BIC _{nt}	0,12	0,00	0,88	0,00
$\operatorname{CAIC}_{\operatorname{N}}$	34%	0%	64%	2%	CAIC _N	0,27	0,00	0,69	0,01
CAIC _{nt}	18%	0%	81%	1%	CAIC _{nt}	0,07	0,00	0,92	0,00

Selected percentage per candidate model in the S dataset for the *I* information criteria Median of the estimated weight per candidate model in the S dataset for the *I* information criteria Target dose: Boxplot representation of the predicted MED for the I information criteria. The dashed line represents the reference and the diamonds the mean values

Dose response profile: Boxplot representation of the total D_{KL} for the I information criteria. The dashed line represents the reference and the diamonds the mean values

Information criteria:

Scenario: Emax, doses below ED50

Model selection:

Model averaging:

Ι	Emax	Linear	Log-Linear	Sigmoid Emax	Ι	Emax	Linear	Log-Linear	Sigmoid Emax
AIC	50%	37%	4%	9%	AIC	0,40	0,26	0,00	0,18
BIC _N	14%	72%	14%	0%	BIC _N	0,15	0,77	0,01	0,01
BIC _{nt}	2%	80%	18%	0%	BIC _{nt}	0,03	0,94	0,01	0,00
CAIC _N	9%	75%	16%	0%	CAIC _N	0,10	0,84	0,01	0,00
CAIC _{nt}	1%	80%	19%	0%	CAIC _{nt}	0,02	0,96	0,01	0,00

Selected percentage per candidate model in the S dataset for the *I* information criteria Median of the estimated weights per candidate model in the S dataset for the *I* information criteria

Information criteria:

Scenario: No drug effect

Model selection:

Model averaging:

Ι	Emax	Linear	Log-Linear	Sigmoid Emax	Ι	Emax	Linear	Log-Linear	Sigmoid Emax
AIC	2%	<mark>48</mark> %	50%	0%	AIC	0,00	0,45	0,45	0,00
BIC _N	0%	51%	49%	0%	BIC _N	0,00	0, <mark>48</mark>	0,50	0,00
BIC _{nt}	0%	51%	49%	0%	BIC _{nt}	0,00	0,49	0,51	0,00
$\operatorname{CAIC}_{\operatorname{N}}$	0%	51%	49%	0%	CAIC _N	0,00	0,49	0,50	0,00
CAIC _{nt}	0%	51%	49%	0%	CAIC _{nt}	0,00	0,49	0,51	0,00

Selected percentage per candidate model in the S dataset for the *I* information criteria Median of the estimated weights per candidate model in the S dataset for the *I* information criteria